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ABSTRACT

Smart farming is reshaping modern agriculture by combining Artificial Intelligence (Al),
Machine Learning (ML), and Deep Learning (DL) to make farming more efficient, sustainable,
and data-driven. As farmers face the growing challenges of climate change, shrinking natural
resources, and rising global food demands, technology is becoming an essential partner in
improving how crops are planned, monitored, and managed. This study explores how smart
farming technologies—such as sensors, drones, and loT-based monitoring systems—are
transforming every stage of agriculture, from soil management to market prediction. It
introduces a practical framework built around three key areas: Automated Smart Farming
Operations, Farmgate-to-Fork and Data-Driven Decision Support. These systems work together
to optimize resources, minimize waste, and boost productivity through predictive insights and
real-time data analysis. The paper also examines how Al models like Convolutional Neural
Networks (CNNs), Random Forests (RF), and Support Vector Machines (SVM) contribute to
precision farming. While the benefits are clear, challenges such as limited data access, high
technology costs, and unequal adoption among small farmers remain. Overall, the study
highlights how smart farming can lead agriculture toward a more sustainable, inclusive, and
technology-driven future.

Keywords: Artificial Intelligence; Machine Learning Soil Management; Crop Production;
Market Dynamics; Farmer Empowerment; Precision Agriculture; Explainable Al; Sustainability

INTRODUCTION
Agriculture has long relied on farmers’
experiential  knowledge, built  through
generations of observation and practice.
Traditional farming decisions were guided by
sensory cues—examining soil color, gauging

moisture, or monitoring plant and livestock
conditions. These intuitive methods, once
central to agricultural success, are now being
transformed by Artificial Intelligence (Al) and
Machine Learning (ML).
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Modern agriculture operates within a data-
driven ecosystem where satellites, drones, and
loT-based soil sensors collect real-time
information for analysis and precision
decision-making (Kamilaris et al., 2018).
Rather than replacing human expertise, Al and
ML enhance it, acting as intelligent tools that
improve efficiency, sustainability, and
foresight in farming (Patricio et al., 2018).

Al involves computational systems capable of
human-like reasoning and decision-making
(Russell et al., 2021) while ML enables these
systems to learn from data and improve
performance autonomously (Goodfellow et al.,
2016). Together, they support applications
such as disease detection, yield prediction, and
market forecasting (Liakos et al., 2018).

The agricultural sector faces critical global
challenges—<climate change, soil degradation,
resource scarcity, and market instability. These
complex issues demand scalable, intelligent
solutions. Al offers transformative potential
through  precision  farming,  predictive
analytics, and decision-support  systems
(Zhang et al., 2022).

This paper explores Al’s role in transforming
agriculture across four domains:  soil
management, crop  production,  market
dynamics, and farmer empowerment. Al
enhances soil fertility mapping, optimizes
inputs, forecasts vyields, stabilizes market
trends, and delivers personalized advisories to
farmers.

1. Definition and Basic Concepts of Al and
ML

Acrtificial Intelligence (Al)is a field of
computer science focused on designing
systems capable of performing tasks that
require human-like intelligence, including
perception, reasoning, and decision-making
(Russell et al., 2021). Machine Learning (ML),
a subset of Al, emphasizes algorithms and
models that enable computers to learn from
data and make predictions or decisions without
explicit programming  (Goodfellow et al.,
2016).
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2.1. Types of Machine Learning Algorithms
in Agriculture:

Machine learning algorithms have various
applications in agriculture, contributing to
improved crop yield, disease detection, pest
management, and precision agriculture. Some
commonly used ML algorithms in agriculture
include:

= Decision Trees: Decision trees are tree-
like structures that represent decisions and
their possible consequences. They are
useful for tasks such as crop classification,
disease diagnosis, and yield prediction.

= Random Forests: Random forests
combine multiple decision trees to create a
more robust and accurate model. They can
handle large and complex datasets,
making them suitable for tasks like crop
yield estimation and plant disease
detection.

= Support Vector Machines (SVM): SVM
is a powerful algorithm wused for
classification and regression tasks. It
separates data into different classes by
finding an optimal hyperplane in a high-
dimensional space. SVMs can be applied
to tasks such as weed detection and crop
classification.

= Neural Networks: Neural networks are
computational models inspired by the
human  brain. They consist of
interconnected nodes(neurons)organized
in layers. Deep Learning, a subset of
neural networks, has been successful in
image analysis tasks like plant disease
identification, yield prediction, and weed
detection.

= K-Nearest Neighbors (KNN): KNN is a
simple algorithm that classifies objects
based on their similarity to neighboring
examples. It is useful for tasks such as
crop disease classification and weed
identification.

= Gaussian Processes: Gaussian processes
are probabilistic models that can be used
for regression and uncertainty estimation.
They are beneficial in predicting crop
yield, water stress, and soil properties.
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Table 1. Accuracy Rates of AI/ML/DL Techniques based on application area

Al Technique Application Area Accuracy Rate
Convolutional Neural Network (CNN) Plant disease detection 92-99%
Support Vector Machine (SVM) Crop yield prediction 85-93%
Random Forest (RF) Soil fertility classification 88-95%
Recurrent Neural Network (RNN)/(LSTM) | Weather  forecasting & 90-96%
irrigation
Deep Learning (Hybrid Models) Weed detection & removal 94-98%
Reinforcement Learning Smart irrigation control 89-94%

Training
¥ ¥ ¥
Data Algorithm Reinforcement
Y Y L
Supervised Unsupervised Reinforcement
Learning Learning Learning

Figure 1 Conceptual Overview of Al and ML in Agriculture

In Al and ML, several foundational
concepts define their functioning and
performance:

Data Collection: Agricultural data is
gathered from sensors, satellites, drones,
and manual observations, capturing details
on climate, soil, crops, and yields.
Ensuring high data quality and accuracy is
vital for reliable analysis and decision-
making.

Training: ML models learn by analyzing
input data and adjusting their internal
parameters to minimize errors between
predicted and actual results (Liakos et al.,
2018).

Algorithms: Algorithms represent the
mathematical logic that allows Al systems
to detect patterns, extract features, and
generate insights from complex datasets
(Kamilaris et al., 2018)
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Supervised Learning: This approach
involves training models on labeled
datasets with known outputs, commonly
applied in crop classification, disease
diagnosis, and yield prediction (Patricio et
al., 2018)

Unsupervised Learning: In this method,
models explore unlabeled data to uncover
hidden patterns or groupings, useful in soil
fertility assessment and clustering of crop
features (Zhang et al., 2022).
Reinforcement Learning: An agent
learns through interaction with its
environment by maximizing cumulative
rewards. This technique is applied in
optimizing irrigation schedules, pesticide
usage, and farm resource management
(Tripathi et al., 2021).
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2.2 Role of Artificial Intelligence (Al) and

Machine Learning (ML) in Agriculture

Al and ML are revolutionizing modern

agriculture by enabling intelligent, data-driven

decision-making. While Al simulates human
cognitive processes such as reasoning and
problem-solving, ML empowers systems to
continuously learn and adapt from data (Zhang
et al.,, 2022). Together, they form the
foundation of smart farming, integrating
digital technologies to enhance productivity,
efficiency, and environmental sustainability

(Patricio et al., 2018).

Key applications include

e The integration of Al and ML signifies
more than technological innovation—it
marks a paradigm shift toward sustainable
and resilient agricultural systems. By
enhancing productivity, conserving natural
resources, and strengthening global food
security, these technologies are key to
addressing the challenges of population
growth and climate change (Tripathi et al.,
2021).

e Crop and Soil Monitoring: Al and ML
models process data from satellites,
drones, and Internet of Things (loT)
sensors to assess soil health, detect
nutrient deficiencies, forecast yields, and
identify crop diseases at early stages
(Liakos et al., 2018)

Precision Farming: Advanced algorithms
generate high-resolution field maps that
guide irrigation, fertilization, and pesticide
applications, reducing input waste and
environmental impact (Kamilaris et al.,
2018).

Agricultural  Robotics:  Al-powered
robots autonomously perform labor-
intensive tasks such as planting, weeding,
and harvesting, decreasing dependency on
manual labor and ensuring operational
efficiency (Bechar et al., 2017).

Predictive Analytics: ML-based
predictive models utilize historical and
real-time data to forecast crop Yyields,
weather variability, and market
fluctuations, enabling farmers to plan
effectively and mitigate risks (Wolfert et
al., 2017).

Livestock  Management:  Wearable
sensors combined with Al algorithms
monitor animal health, detect behavioral
anomalies, and track productivity metrics
such as milk yield and body weight
(Nalepa et al., 2019).

Agricultural Drones: Equipped with
computer vision and Al, drones capture
aerial imagery to map fields, identify
stress zones, and monitor pest infestations
with high precision (Sishodia et al., 2020).

Table 2: Comparision of strengths and limitations of Al Tools

System (WIDDS)

Technique Strength Limitation
Computer Vision | Works at high speed. Can multi- | Dimension-based detection may
System (CVS), Genetic | task. affect good species.
Algorithm (GA),
Artificial Neural
Network (ANN)
Rule-Based Expert, | Accurate results in the tested | Inefficiency of DB when
Database (DB) environment. implemented in large scale.
Fuzzy Logic (FL), | Cost-effective, eco-friendly. Inefficiency due to  scattered
WebGIS distribution. Takes time to locate
FL Web-Based, Web- | Good accuracy. Responds swiftly | Limited usage as it requires internet
Based Intelligent | to crop diseases. service. Potency unverified as
Disease Diagnosis

FL & TTS Converter Resolves  plant
problems quickly.

pathological | Requires high-speed internet. Uses a

voice service as its multimedia

Expert System Using | Faster treatment as diseases are | Time-consuming. Requires constant
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Rule-Based in Disease | diagnosed quickly. Cost-effective | monitoring to check if pests devel

Detection based on preventive approach.

ANN, GIS 95% accuracy. Internet-based; some rural farmers
may not have access.

FuzzyX Pest | High precision in forecasting. Internet-dependent.

Information System for

Farmers

Web-Based Expert | High performance. Internet and web-based.

System

ANN Has over 90% prediction rate. Does not kill infections or reduce

their effect.

This study highlights how Al can drive the
digital transformation of agriculture, improve
sustainability, and foster inclusive growth. The
framework underscores not only the technical
benefits but also the socio-economic
implications, emphasizing equity,
accessibility, and environmental stewardship.
The paper concludes by identifying key
research directions necessary to overcome
current limitations and ensure that the
integration of Al in agriculture remains
scalable, sustainable, and inclusive for all
stakeholders in the agricultural ecosystem.

MATERIALS AND METHODS

This study reviews research from 2018 onward
on the use of machine learning (ML) and deep
learning (DL) in agriculture, focusing on crop
selection, soil and water management, nutrient
management, pest and disease control, harvest
practices, and climate impact assessment.
Relevant studies were identified through
searches in IEEE Xplore, ScienceDirect, Web
of Science, Springer, MDPI, and Google
Scholar using keywords such as “machine
learning” AND “agriculture”, “deep learning”
AND “crop yield prediction”, “artificial neural
networks” AND “agriculture”, and related
terms. Searches were limited to titles,
abstracts, and keywords to ensure relevance,
targeting studies that applied ML, DL, or
ANNs in agricultural  production and
management.

Literature Review

Artificial Intelligence (Al), including Machine
Learning (ML) and Deep Learning (DL), has
become a transformative force in modern
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agriculture, enhancing productivity, efficiency,
and sustainability across the agricultural value
chain. Early applications focused on crop
monitoring, disease detection, and vyield
prediction, leveraging image processing and
ML techniques for plant health assessment.
For example, (Singh et al., 2019) introduced
PlantDoc, a dataset for visual plant disease
detection, while Kulkarni et al. (Kulkarni et
al.,, 2021) demonstrated the use of image
processing and ML for accurate disease
identification. Recent studies have extended
these  approaches using drones and
autonomous systems for early pest and disease
detection in crops such as cashew (Rajagopal
et al., 2023) and integrated farm management
platforms like (Aijaz et al.,, 2025) for
optimized resource use.

DL methods, particularly Convolutional
Neural Networks (CNNs), attention-based
models, and transformer architectures, have
enhanced feature extraction from complex,
high-dimensional  agricultural data. For
instance, Hu et al. 2024) developed a
lightweight attention-based encoder-decoder
framework for crop identification using
multispectral images, achieving improved
accuracy in real-world settings. (Didwania et
al. 2024) applied transformer-based models to
provide Al-driven advisory services for
farmers. Transfer learning and meta-learning
techniques, such as (Al Sahili 2022) and
(Tseng et al., 2024), have reduced the need for
extensive labeled datasets while improving
model generalization across diverse crop types
and regions.
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ML and DL have also been integrated into
autonomous systems, including drones and
robotics, for real-time crop monitoring, disease
detection, and precision pesticide application

(Pratihar et al., 2024). Explainable Al
approaches, such as AgroXAl (Turgut et al.,
2024), are being adopted to provide
interpretable crop recommendations,

facilitating trust and adoption among farmers.
These Al-driven methodologies collectively
enhance yield prediction, disease and pest
management, soil and water optimization, and
climate impact assessment (Nawaz et al.,
2025).

Despite these advancements,
challenges  remain, including limited
availability of large-scale annotated datasets,
high computational requirements for DL
models, and the need for scalable deployment
in rural and resource-constrained areas.
Capacity  building, Al literacy, and
infrastructure development are essential to
ensure that ML and DL technologies are
accessible and beneficial to smallholder
farmers.

Importance of advance technologies
Agriculture
Now days, Al is not just a tool but a partner
for Indian farmers helping them navigate
challenges and seize opportunities in the ever-
evolving agricultural landscape. Artificial
Intelligence (Al) is revolutionizing Indian
agriculture bringing tangible improvements to
farmers' lives.
e Smarter Farming Decisions: Al tools
analyze weather patterns soil health and

in
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irrigate or harvest leading to better yields
and reduced losses.

o  Efficient Resource Use: Al technologies
enable the efficient use of inputs such as
water  fertilizers  and pesticides
minimizing  waste and  reducing
operational costs.

e Early Disease Detection: Al systems can
identify signs of plant diseases or pest
infestations early on. This allows farmers
to take preventive measures before the
problem spreads saving crops and
reducing the need for harmful chemicals.

e Access to Market Information:
Platforms like eNAM connect farmers
directly to  markets  eliminating
middlemen. This ensures they get fair
prices for their produce and reduces the
chances of exploitation.

e Financial Inclusion: Al-driven apps
provide farmers with access to financial
services helping them secure loans
insurance and subsidies. This financial
support empowers them to invest in better
equipment and practices.

e Sustainable Practices: Al contributes to
the promotion of sustainable farming
practices by optimizing resource use and
reducing the environmental footprint of
agricultural activities.

e Skill Development: Initiatives are
underway to train the youth in Al and
agriculture creating a new generation of
tech-savvy farmers who can innovate and
lead in the agricultural sector.

crop conditions to provide farmers with How Al is Transforming Indian
timely advice. This means they can make Agriculture: Real-World Benefits
informed decisions about when to plant
[ Soil ] [ Crop ] [ Market ] Farmer ]
! l l !
I Al Soil Precision [Market Price Empowerment
Analysis Farming Prediction of Smalliholder
| | [ |
RNy
! l l
Nutrient Pest & Supply Chain Financial
Mapping Disease Optimization Inclusion
Prediction (eNWR. Fintech)
=l E-—-3A oo
Climate Risks
Figure.2 Al is Transforming Indian Agriculture
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Soil Management: Precision, Monitoring,
and Optimization

Al technologies have revolutionized soil
management by enabling precise analysis and
mapping of soil health. Machine learning
algorithms process data from various sources,
including sensors and satellite imagery, to
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assess soil properties such as pH, moisture
content, and nutrient levels. Platforms like
CropX integrate soil sensors, satellite imaging,
and agronomic modelling to generate
recommendations regarding irrigation and
nutrient application.

Table 3: Comparative analysis of soil management using AI/ML/DL techniques

Technique Strength Limitation
DSS Reduces erosion and sedimentary Requires big data for training.
yield.
. . . Only measures a few soil enzymes. It
Can predict soil enzyme activity. . e
. e considers more classification than
ANN Accurately predicts and classifies . . .
. improving the performance of the soil.
soil structure.
Fuzzy Logic: Can classify soil according to Needs big data. Only a few cases were
SRC-DSS associated risks. studied.
Minimizes nitrate leaching,
MOM maximizes Takes time. Limited only to nitrogen.
Production.
ANN Can predict monthly mean soil Considers only temperatures factor for
temperature soil performance.
ANN Cost-effective, saves time, has 92% Requires big data for training. Has
accuracy restriction in areas of implementation.

Soil Health Monitoring via Sensors and
Imagery

Soil health is one of the most important factors
influencing crop vyield, and Al is helping
farmers monitor it with greater accuracy. By
combining data from soil moisture sensors,
satellite images, and spectral sensing, Al can
assess parameters such as soil pH, nutrient
availability, and moisture levels in real time.
Weather data can also be integrated to predict
changes that may affect soil quality. This
continuous monitoring enables farmers to
apply targeted interventions—Iike precision
fertilization or timely irrigation—instead of
treating all fields uniformly. As a result, both
efficiency and sustainability are improved.
Such Al-driven soil insights reduce waste
while enhancing productivity (Aijaz et al.,
2025)

Mapping and Spatial Precision

Not all parts of a farm have the same soil
quality, and this variation can greatly impact

Copyright © Nov.-Dec., 2025; CRAF

output. Al-powered geospatial techniques are
now being used to generate highly detailed soil
maps that highlight micro-variations within
fields. These maps allow farmers to divide
their land into different management zones and
apply inputs accordingly—for example,
adjusting fertilizer amounts or irrigation
schedules to specific areas. This targeted
approach reduces resource wastage and
ensures that crops receive the right treatment
in the right place. Over time, spatial precision
supports healthier soils and better harvests. It
also reduces environmental impacts by
preventing overuse of chemicals (Raj, M.
2025).

Decision Support for Input Management

Al models are increasingly being used to guide
farmers on when and how to intervene in soil
management. By analyzing soil condition data,
these systems can recommend the right timing
for nutrient application, irrigation, or even
tillage. Such predictive decision support
improves efficiency while cutting down on

7
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unnecessary costs. It also helps conserve
resources like water and fertilizer, reducing
negative environmental effects. Farmers
benefit not just from healthier crops but also
from more sustainable farming practices
overall. Al-enabled decision-making thus
ensures long-term soil health while supporting
higher productivity (Baranipriya, A. 2024).
Crop Production: Prediction, Disease
Management, and Smart Farming

Al-based crop disease detection via
convolutional neural networks (CNNs) is a
well-explored domain: e.g. leaf-based disease
detection surveys review various deep learning
approaches and trade-offs between
explainability and accuracy. (Kulkarni et al.,
2021) Also, conventional ML/image
processing techniques for plant disease
detection have achieved accuracies in the 90-
plus percent range in controlled datasets.
(Rajagopal et al., 2023).

Yield Prediction and Crop
Recommendation

Machine learning models leveraging historical
yield data, climate forecasts, and soil
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information can forecast crop output, and
recommend crop types or varieties suited to
local conditions. Systems like AgroXAl
propose suitable crops based on weather &
soil, with explainability to help end-users
understand the “why” behind suggestions.
(Turgut et al., 2024) Al and machine learning
are helping farmers predict yields and choose
the right crops for their fields. By analyzing
historical yield data, soil health, and climate
forecasts, these models can provide accurate
predictions about expected production. Tools
like AgroXAl even go a step further by
recommending the most suitable crops and
varieties based on local soil and weather
conditions. Importantly, these systems are
explainable, so farmers can understand why a
particular crop is suggested. This transparency
builds trust and confidence among farmers
while guiding them toward more profitable
decisions. In this way, Al makes farming less
risky and more predictable (Nautiyal, M.
2025).

Table 4: Comparative analysis of crop management using Al/ML/DL techniques

Technique Strength Limitation
CALEX Formulates scheduling Time-consuming.
guidelines for crop management
activities.
PROLOG Removes less-used farm tools Location-specific.
from the farm.
ANN Predicts crop yield. Only considers weather as a factor
for crop yield.
ROBOTICS - Can harvest up to 40 hectares of | Expensive; consumes a lot of fuel.
Demeter crops.
ROBOTICS 80% success rate in harvesting Slow picking speed and accuracy.
crops.
ANN Over 90% success rate in Limited number of symptoms
detecting crop nutrition considered.
disorders.
FUzzY Predicts cotton yield and aids Relatively slow.
Cognitive Map crop decision management.
ANN Predicts crop response to soil Only considers soil temperature and
moisture and salinity. texture as factors.
ANN and Fuzzy | Reduces insect attacks on crops. | Cannot differentiate between crops
Logic and weeds.
ANN Accurately predicts rice yield. Time-consuming and climate-
specific.
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Disease and Pest Detection
Early detection of plant diseases and pests is
critical to reducing yield losses, and Al is
proving to be a powerful ally in this area. Deep
learning techniques applied to leaf images,
satellite data, and drone imagery can identify
signs of disease before they spread widely.
When combined with sensor data—such as
temperature, humidity, and soil moisture—
accuracy improves significantly. A notable
example is the CVGG-16 model developed by
I11T-Allahabad researchers, which integrates
image and sensor data for high-accuracy
disease detection. Such innovations help
farmers take preventive action, minimize
pesticide use, and safeguard crop productivity.
Al-driven plant health monitoring ensures
faster responses and healthier harvests (Singh
etal., 2019).

Precision Farming and Automation
Al-powered automation is reshaping how
farms are managed, making agriculture more
precise and efficient. Robots, drones, and
automated vehicles are increasingly being used
for planting, spraying, monitoring, and
harvesting, which reduces the need for manual
labor. Al also helps in optimizing irrigation
schedules by recommending exactly when and
how much water crops need, preventing both
overuse and scarcity. Fertilizer and pesticide
applications can be fine-tuned with similar
precision, reducing costs and environmental
harm. Over time, such automation ensures
uniformity in crop growth and improves
timeliness of farming activities. This shift
toward smart farming practices is transforming
traditional methods into technology-driven
systems (Nawaz et al., 2025)

Market Dynamics: Forecasting, Supply
Chains, and Value Capture

Al enhances market dynamics through tools
for price forecasting, demand prediction, and
logistics  optimization. Machine learning
models, by analyzing historical price data and
macroeconomic  features, can  forecast
commodity prices and help farmers decide
when to sell. Some agritech firms embed such
modules in trading platforms and supply chain
logistics modules. Further, Al-based supply
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chain systems optimize routing, inventory, and
reduce post-harvest losses. In India, digital
platforms are encouraging direct farmer-to-
consumer linkages, reducing dependence on
intermediaries.

Price Prediction & Demand Forecasting

Al is becoming a powerful tool for helping
farmers understand and plan for market
fluctuations. By analyzing past price records,
demand patterns, weather conditions, and
broader economic indicators, Al can forecast
future commodity prices with higher accuracy.
This allows farmers to decide whether it is
better to sell immediately, store their produce,
or process it for added value. Such insights
reduce the risks of sudden price drops and
improve overall income stability. With the
support of Al, farmers can shift from reactive
selling to strategic market planning. This
transformation strengthens their role in the
agricultural value chain (Mukherjee et al.,
2023).

Supply Chain Optimization

From the moment crops are harvested until
they reach consumers, Al can make supply
chains more efficient and reliable. Smart
algorithms help plan transport routes, manage
storage conditions, and ensure that produce
reaches markets on time while minimizing
losses. By improving traceability and quality
checks, Al also strengthens food safety and
consumer trust. Matching supply with real-
time demand further reduces wastage and
improves farmer profitability. For developing
countries, where post-harvest losses remain
high, Al-enabled logistics are a game-changer.
Ultimately, these innovations reduce costs,
increase transparency, and build more resilient
food systems (Baranipriya, A. 2024).
Platforms & Market Access

Digital platforms are opening new doors for
farmers to connect directly with buyers,
reducing  dependence on  middlemen.
Government-backed or private platforms,
when integrated with Al, can recommend the
best market channels, pricing strategies, and
logistics support. This helps farmers secure
better profits while also reaching wider
markets. By cutting unnecessary

9
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intermediaries, farmers gain a greater share of
the value they create. Al-driven platforms also
bring fairness and transparency to agricultural
trade. Over time, such systems can empower
even small-scale farmers to compete more
effectively in modern markets (Rajagopal et
al., 2023).

Farmer Empowerment:
Finance, & Equity

Al empowers farmers by disseminating
information and enabling credit / insurance
access. Al models recognizing patterns in farm
data (yield history, satellite imagery, farm
inputs) are increasingly used to assess
creditworthiness, especially for smallholder
farmers without formal collateral. Mobile
applications and chatbots leverage Al to
deliver region-specific advice on weather, pest
control, fertilizer schedules, etc. For example,
Plantix (a well-known agritech app) uses deep
learning to diagnose over 800 symptoms
across 60 crops and returns management
advice. (Raj, M. 2025).

Information Delivery & Decision Support
Today’s farmers depend on timely and reliable
information to make better farming decisions.
With the rise of mobile apps, chatbots, and
advisory systems, they can now access
localized weather updates, pest and disease
alerts, and crop management recommendations
in real time. When delivered in local languages
and aligned with regional farming conditions,
these tools become highly effective and user-
friendly. Affordable and easy-to-use platforms
ensure that even smallholder farmers benefit
from modern technologies. This move from
intuition to data-driven practices improves
productivity while reducing risks. Ultimately,
Al-powered advisory solutions empower
farmers to make informed choices every day
(Das et al., 2024).

Knowledge,

Financial Inclusion: Credit, Insurance, Risk
Assessment

Financial access has always been a critical
challenge for farmers, particularly for those
without formal banking records. Al is helping
bridge this gap by using farm data—such as
crop yield history, soil quality, and satellite
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imagery—to assess risks more accurately. This
makes credit scoring more inclusive and
allows for better insurance models tailored to
smallholder farmers. By moving beyond
traditional paperwork, Al-based financial tools
give farmers fairer access to loans and crop
insurance. Affordable, transparent insurance
systems also help reduce uncertainties in
farming. In the long run, such Al-driven
financial inclusion enables farmers to invest
confidently and grow sustainably (Aijaz et al.,
2025).

6.4.3 Collective Models & Shared Resources
For many smallholder farmers, adopting Al
tools individually can be costly and
challenging. Collective models such as cluster
farming and cooperatives make it possible to
share infrastructure, pool farm data, and access
Al-driven technologies together. This reduces
individual costs while maximizing the benefits
of advanced tools for all members. By working
collectively, farmers can better manage risks,
improve productivity, and gain stronger
market access. Such collaborations also foster
community-level knowledge sharing and trust
building. In this way, Al adoption through
cooperative models not only becomes
affordable but also ensures equitable
distribution of benefits (Baranipriya, A. 2024).
Digital Agriculture Framework

The provided framework illustrates a
comprehensive approach to the digital
transformation of agriculture by integrating
advanced technologies, data-driven
methodologies, and smart practices. It is
organized across three major domains: Smart
Farming, Farmgate-to-Fork, and Data-driven
Agriculture. These domains are further
supported by associated frameworks and
practical use cases, collectively aimed at
enhancing sustainability, productivity, and
efficiency within the agricultural ecosystem.
Smart Farming

Smart Farming embodies the operational stage,
where advanced technologies are applied
directly within the farm to maximize
productivity and minimize risks. It enables
precision-based farming practices. Core
frameworks include Smart Farming-as-a-
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Service (FaaS), integrated nutrient
management, and crop health monitoring

systems. Mechanization of farms, precision
micro-irrigation systems, and rapid soil health
analysis (eSHC) serve to reduce manual effort
and increase efficiency. Predictive models for
pest infestations, hyperlocal  weather
advisories, and smart insurance solutions help
mitigate risks. Yield prediction algorithms,
coupled with digital crop input advisories and
e-marketplaces, ensure farmers receive real-
time support for decision-making and market
participation.

Farmgate-to-Fork

This domain addresses the post-harvest value
chain, connecting farm outputs to markets and
consumers while ensuring quality and
efficiency. So it strengthens  market
connectivity and consumer  trust.Market
intelligence systems, logistics management,
and quality and traceability frameworks
underpin this domain. Applications include
end-to-end supply chain optimization, food
safety through quality certification, fintech
solutions such as electronic warehouse receipts
(eNWR), and the development of cold chain
warehousing systems to reduce post-harvest
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losses. Additionally, predictive market linkage
systems support demand forecasting and price
prediction, thereby ensuring fair compensation
for farmers. This phase ensures transparency,

efficiency, and profitability across the
agricultural  value chain by reducing
inefficiencies and safeguarding consumer
trust.

Data-driven Agriculture

The foundation of the entire framework lies in
data-centric approaches, which provide the
digital backbone for agricultural innovation.
The establishment of agri-data marketplaces,
adherence to FAIR (Findable, Accessible,
Interoperable, Reusable) data standards, and
adoption of EFR (interoperability frameworks)
are central components. Data management
platforms (DMP) for agricultural datasets,
master data management systems, and the
creation of registries and directories enable
structured data storage, access, and utilization.
By leveraging Al- and ML-driven analytics,
this stage empowers predictive modeling, real-
time insights, and evidence-based policy
development.

Al Tools in Indian Agriculture:

Table 5: The adoption of Al technologies offers a multitude of benefits for Indian agriculture

Aspect

Traditional Farming

(Al-enabled Farming)

Decision-making

Based on traditional knowledge,
intuition, and experience.

Data-driven  precision farming
with Al models and predictive
analytics.

Overuse of fertilizers, pesticides,

Optimized input usage based on

mismanagement.

Input Usage and water leading to wastage and | soil health, crop requirements,
soil degradation. and Al recommendations.

Productivity & | Highly variable yields, often | Higher and more consistent yields

Yields affected by weather and resource | through optimized planning and

real-time monitoring.

Sustainability

Excessive chemical inputs and
inefficient irrigation harm the
environment.

Sustainable practices promoted
via Al-powered smart irrigation,
soil management, and pest
control.

Climate Resilience

Farmers vulnerable to monsoon
failures, extreme weather, and
pest outbreaks

Al provides early warnings,
predictive weather models, and
adaptive strategies to mitigate
risks.

Market Access

Dependence on middlemen, low
price realization, poor market
intelligence.

Al-driven e-marketplaces, price
prediction models, and
traceability ensure fairer markets.

Crop Monitoring

Manual field inspections—time-
consuming, less accurate.

Satellite, drone, and sensor-based
monitoring with image processing
for real-time insights.

Copyright © Nov.-Dec., 2025; CRAF
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Labor-intensive,
harvesting  due
Harvesting shortages.

Curr. Rese. Agri. Far. (2025) 6(6), 1-17
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labor | ensure timely and efficient yield
collection.

Farm Mechanization | dependence.

Conventional  tractors
manual operation and high labor | with GPS-based navigation and

with | Autonomous driverless tractors

remote control.

Empowerment making support.

Smallholders marginalized with | Al empowers smallholders with
Farmer limited resources and decision- | tools, market insights, and

financial inclusion opportunities.

Challenges & Limitations of Al tools in
Agriculture

Al has immense potential to revolutionize
agriculture; its successful integration requires
overcoming challenges related to data quality,
infrastructure, cost, skills, ethics, and

sustainability to create an inclusive and truly
“smart” farming ecosystem. Below are several
concrete obstacles that we are facing in
deploying Al in agriculture, especially in real-
world settings:

=

DATA QUALITY
AND AVAILABILITY

CHALLENGES

©

TECHNICAL BARRIERS
AND ADOPTION
CHALLENGES

LIMITATIONS
gm =)

A

ETHICAL
CONSIDERATIONSS
AND DATA PRIVACY

Figure 3 Challenges & Limitations of Al tools

e Data Quality and Diversity: Al
models require large, accurate, and
well-labeled datasets, but agricultural
data are often fragmented, biased, and
incomplete, which reduces model
reliability and generalization. A
review on wheat crop monitoring
found that limited and non-diverse
labeled datasets, coarse spatial
resolution of remote sensing, and
difficulties generating reliable ground
truth hamper deployment.

e Infrastructure and Connectivity:
Rural areas often lack stable internet,
electricity, and sensor infrastructure,
making it difficult to deploy loT-based
and real-time Al farming solutions.
Studies indicate that many agrarian

Copyright © Nov.-Dec., 2025; CRAF

regions lack broadband access and
consistent power supply, hindering the
adoption of loT-enabled systems.

e High Costs: The high cost of sensors,
drones, and data maintenance creates
financial barriers, particularly for
small and medium-scale farmers
without subsidies or shared cost
models. Research on smart farming
adoption  highlights  that initial
investment remains a major obstacle.

e Skill and Knowledge Gaps: Farmers
often lack Al and data literacy, while
developers may lack agricultural
expertise, resulting in impractical or
poorly adapted solutions. Reviews
emphasize the shortage of Al-literate
farmers and limited technical experts

12
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in rural regions, highlighting the need
for capacity building.

e Interpretability and Trust: Al
systems often act as “black boxes,”
leading farmers to distrust
recommendations they cannot
understand, especially for disease
detection and resource management
decisions. The lack of model
transparency remains a key limitation
in precision agriculture.

e Localization Challenges: Al tools
trained in one region may fail in others
due to differences in soil, climate, and
crop conditions. Many studies show
that models validated in limited
regions do not generalize well across
diverse agroecological zones.

e Ethical and Policy Issues: Concerns
regarding data privacy, corporate
monopolization, and job displacement
hinder Al adoption in agriculture.
Weak policy frameworks further

exacerbate these challenges,
increasing dependency on proprietary
platforms.

e Energy and Sustainability Costs:
High energy consumption from Al
servers, drones, and sensors can offset
environmental benefits, raising
sustainability ~ concerns. Studies
identify energy use and carbon
emissions as critical issues in Al-
driven agricultural systems.

Future Directions

As the field of Al in agriculture advances,
several research and development paths stand
out as particularly promising. One key area is
data collection and sharing, where progress
hinges on creating large, annotated, multi-
modal datasets that cover diverse crops and
geographies. For example, the AgriNet project
collected over 160,000 agricultural images
from more than 19 geographical locations and
more than 423 classes of species, diseases,
pests, and weeds; the pretrained models built
on AgriNet showed strong performance across
multiple external datasets. (Singh et al., 2019).
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Federated learning is also being explored to
allow decentralized model training that
preserves data privacy, with several studies
and reviews emphasizing its relevance in smart
agriculture systems.

Another  promising direction is edge
computing and low-connectivity solutions.
Researchers are increasingly focusing on
architectures that allow Al models to run on
local devices (such as sensors or smartphones),
reducing dependence on continuous cloud
connectivity. This is crucial in rural areas with
unstable or limited internet service. A recent
paper on edge-computing-enabled smart
agriculture discusses the technical
architectures and bottlenecks in  such
environments, including energy constraints
and signal reliability issues, and proposes
ways to build more resilient designs. (Hindel
et al. 2023). Also, efforts are being made to
improve energy efficiency of edge systems,
such as using optimized offloading
mechanisms,  clustering and  denoising
algorithms, or even powering edge devices via
renewable or agricultural waste sources.

To build trust and adoption, explainability,
transparency, and model interpretability must
be central. Farmers and extension agents need
to understand why a recommendation or
prediction is made—not just what the
recommendation is. Without such
explainability, adoption lags due to mistrust or
lack of clarity. Meanwhile, emerging Al
paradigms like meta-learning (e.g. TIML)
allow models that can transfer knowledge from
data-rich  regions to data-scarce ones,
improving adaptability. (arXiv)
Cost-effectiveness and scalability are also
critical. To make Al tools accessible beyond
large farms or wealthy agribusinesses, lower-
cost sensors, open-source frameworks,
modular robotics, cooperative or shared
infrastructure models, and financing/subsidy
schemes are needed. Hybrid models that
combine classical machine learning and
transfer learning or feature selection (for
instance combining ReliefF with transfer
learning) have shown good performance with
less data or resource requirements.
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Localization and adaptation matter: Al
models must be tailored to local
agroecological conditions, crop varieties,
cultural practices, and available inputs.
Including farmer knowledge via participatory
design, collecting local feedback, and
continuous field testing will help ensure
models remain relevant and practical. Domain
generalization technigues—such as those used
for crop segmentation under varying terrain,
lighting, weather, and crop species—are
proving useful in making models more robust
in real-world deployment. (Singh et al., 2019).
Finally, policy, regulation, and ethical
frameworks are required alongside technical
innovation. These include ensuring data
privacy, defining data ownership or benefit
sharing, providing incentives or subsidies for
infrastructure and extension services, and
evaluating the sustainability and
environmental impact of Al deployment.
Studies suggest that lacking such frameworks
leads to slow uptake and possible inequities.
Edge AIl’s promise is strong, but it may widen
the digital divide if smallholder farmers do not
have access or capacity. Additionally, novel
methods like self-supervised learning are
emerging to reduce dependence on manually
labeled.
CONCLUSION

This study shows how smart farming
technologies—Ilike sensors, drones, and loT-
based monitoring systems—are changing the
way agriculture works, from managing soil
and crops to predicting market trends. The
proposed framework is built around three main
areas: Automated Smart Farming Operations,
Farmgate-to-Fork Connectivity, and Data-
Driven Decision Support. Together, these
elements create a more connected, efficient,
and sustainable approach to farming. At the
center of this transformation is Artificial
Intelligence (Al). By combining Al with real-
time data and machine learning, farmers can
monitor soil health more accurately, predict
yields, detect pests or diseases early, and make
smarter decisions based on reliable insights.
This not only improves productivity and
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reduces costs but also supports eco-friendly
and resource-efficient farming practices.

Al is also reshaping agricultural markets—
helping forecast prices, streamline supply
chains, and connect farmers directly to digital
marketplaces. Still, challenges such as limited
internet access, inconsistent data, and a lack of
technical skills continue to slow adoption.
Overcoming these hurdles will require
teamwork between policymakers, researchers,
and technology providers. As agriculture
becomes more data-driven, embracing
Explainable and Sustainable Al will be key to
ensuring trust, transparency, and long-term
environmental balance. In the end, smart
farming and Al together offer a powerful path
toward a future of precision, resilience, and
sustainable growth in agriculture.
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