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INTRODUCTION  

Agriculture has long relied on farmers’ 

experiential knowledge, built through 

generations of observation and practice. 

Traditional farming decisions were guided by 

sensory cues—examining soil color, gauging 

moisture, or monitoring plant and livestock 

conditions. These intuitive methods, once 

central to agricultural success, are now being 

transformed by Artificial Intelligence (AI) and 

Machine Learning (ML). 
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ABSTRACT 

Smart farming is reshaping modern agriculture by combining Artificial Intelligence (AI), 

Machine Learning (ML), and Deep Learning (DL) to make farming more efficient, sustainable, 

and data-driven. As farmers face the growing challenges of climate change, shrinking natural 

resources, and rising global food demands, technology is becoming an essential partner in 

improving how crops are planned, monitored, and managed. This study explores how smart 

farming technologies—such as sensors, drones, and IoT-based monitoring systems—are 

transforming every stage of agriculture, from soil management to market prediction. It 

introduces a practical framework built around three key areas: Automated Smart Farming 

Operations, Farmgate-to-Fork and Data-Driven Decision Support. These systems work together 

to optimize resources, minimize waste, and boost productivity through predictive insights and 

real-time data analysis. The paper also examines how AI models like Convolutional Neural 

Networks (CNNs), Random Forests (RF), and Support Vector Machines (SVM) contribute to 

precision farming. While the benefits are clear, challenges such as limited data access, high 

technology costs, and unequal adoption among small farmers remain. Overall, the study 

highlights how smart farming can lead agriculture toward a more sustainable, inclusive, and 

technology-driven future. 
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Modern agriculture operates within a data-

driven ecosystem where satellites, drones, and 

IoT-based soil sensors collect real-time 

information for analysis and precision 

decision-making (Kamilaris et al., 2018). 

Rather than replacing human expertise, AI and 

ML enhance it, acting as intelligent tools that 

improve efficiency, sustainability, and 

foresight in farming (Patrício et al., 2018). 

AI involves computational systems capable of 

human-like reasoning and decision-making 

(Russell et al., 2021)  while ML enables these 

systems to learn from data and improve 

performance autonomously (Goodfellow et al., 

2016). Together,  they support applications 

such as disease detection, yield prediction, and 

market forecasting (Liakos et al., 2018).   

The agricultural sector faces critical global 

challenges—climate change, soil degradation, 

resource scarcity, and market instability. These 

complex issues demand scalable, intelligent 

solutions. AI offers transformative potential 

through precision farming, predictive 

analytics, and decision-support systems 

(Zhang et al., 2022).   

This paper explores AI’s role in transforming 

agriculture across four domains: soil 

management, crop production, market 

dynamics, and farmer empowerment. AI 

enhances soil fertility mapping, optimizes 

inputs, forecasts yields, stabilizes market 

trends, and delivers personalized advisories to 

farmers. 

 

1.  Definition and Basic Concepts of AI and 

ML 

Artificial Intelligence (AI)is a field of 

computer science focused on designing 

systems capable of performing tasks that 

require human-like intelligence, including 

perception, reasoning, and decision-making 

(Russell et al., 2021). Machine Learning (ML), 

a subset of AI, emphasizes algorithms and 

models that enable computers to learn from 

data and make predictions or decisions without 

explicit programming  (Goodfellow et al., 

2016). 

2.1. Types of Machine Learning Algorithms 

in Agriculture: 

Machine learning algorithms have various 

applications in agriculture, contributing to 

improved crop yield, disease detection, pest 

management, and precision agriculture. Some 

commonly used ML algorithms in agriculture 

include: 

 Decision Trees: Decision trees are tree-

like structures that represent decisions and 

their possible consequences. They are 

useful for tasks such as crop classification, 

disease diagnosis, and yield prediction. 

 Random Forests: Random forests 

combine multiple decision trees to create a 

more robust and accurate model. They can 

handle large and complex datasets, 

making them suitable for tasks like crop 

yield estimation and plant disease 

detection. 

 Support Vector Machines (SVM): SVM 

is a powerful algorithm used for 

classification and regression tasks. It 

separates data into different classes by 

finding an optimal hyperplane in a high-

dimensional space. SVMs can be applied 

to tasks such as weed detection and crop 

classification. 

 Neural Networks: Neural networks are 

computational models inspired by the 

human brain. They consist of 

interconnected nodes(neurons)organized 

in layers. Deep Learning, a subset of 

neural networks, has been successful in 

image analysis tasks like plant disease 

identification, yield prediction, and weed 

detection. 

 K-Nearest Neighbors (KNN): KNN is a 

simple algorithm that classifies objects 

based on their similarity to neighboring 

examples. It is useful for tasks such as 

crop disease classification and weed 

identification. 

 Gaussian Processes: Gaussian processes 

are probabilistic models that can be used 

for regression and uncertainty estimation. 

They are beneficial in predicting crop 

yield, water stress, and soil properties. 
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Table 1. Accuracy Rates of AI/ML/DL Techniques based on  application area 

 

 

 

Figure 1 Conceptual Overview of AI and ML in Agriculture 

 

In AI and ML, several foundational 

concepts define their functioning and 

performance: 

 Data Collection: Agricultural data is 

gathered from sensors, satellites, drones, 

and manual observations, capturing details 

on climate, soil, crops, and yields. 

Ensuring high data quality and accuracy is 

vital for reliable analysis and decision-

making. 

 Training: ML models learn by analyzing 

input data and adjusting their internal 

parameters to minimize errors between 

predicted and actual results (Liakos et al., 

2018). 

 Algorithms: Algorithms represent the 

mathematical logic that allows AI systems 

to detect patterns, extract features, and 

generate insights from complex datasets 

(Kamilaris et al., 2018)   

 Supervised Learning: This approach 

involves training models on labeled 

datasets with known outputs, commonly 

applied in crop classification, disease 

diagnosis, and yield prediction (Patrício et 

al., 2018) 

 Unsupervised Learning: In this method, 

models explore unlabeled data to uncover 

hidden patterns or groupings, useful in soil 

fertility assessment and clustering of crop 

features (Zhang et al., 2022). 

 Reinforcement Learning: An agent 

learns through interaction with its 

environment by maximizing cumulative 

rewards. This technique is applied in 

optimizing irrigation schedules, pesticide 

usage, and farm resource management 

(Tripathi et al., 2021).   

 

AI Technique Application Area Accuracy Rate 

Convolutional Neural Network (CNN) Plant disease detection 92–99% 

Support Vector Machine (SVM) Crop yield prediction 85–93% 

Random Forest (RF) Soil fertility classification 88–95% 

Recurrent Neural Network (RNN)/(LSTM) Weather forecasting & 

irrigation 

90–96% 

Deep Learning (Hybrid Models) Weed detection & removal 94–98% 

Reinforcement Learning Smart irrigation control 89–94% 
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2.2   Role of Artificial Intelligence (AI) and 

Machine Learning (ML) in Agriculture 

AI and ML are revolutionizing modern 

agriculture by enabling intelligent, data-driven 

decision-making. While AI simulates human 

cognitive processes such as reasoning and 

problem-solving, ML empowers systems to 

continuously learn and adapt from data (Zhang 

et al., 2022).   Together, they form the 

foundation of smart farming, integrating 

digital technologies to enhance productivity, 

efficiency, and environmental sustainability 

(Patrício et al., 2018). 

 Key applications include 

 The integration of AI and ML signifies 

more than technological innovation—it 

marks a paradigm shift toward sustainable 

and resilient agricultural systems. By 

enhancing productivity, conserving natural 

resources, and strengthening global food 

security, these technologies are key to 

addressing the challenges of population 

growth and climate change (Tripathi et al., 

2021). 

 Crop and Soil Monitoring: AI and ML 

models process data from satellites, 

drones, and Internet of Things (IoT) 

sensors to assess soil health, detect 

nutrient deficiencies, forecast yields, and 

identify crop diseases at early stages 

(Liakos et al., 2018)   

 Precision Farming: Advanced algorithms 

generate high-resolution field maps that 

guide irrigation, fertilization, and pesticide 

applications, reducing input waste and 

environmental impact (Kamilaris et al., 

2018). 

 Agricultural Robotics: AI-powered 

robots autonomously perform labor-

intensive tasks such as planting, weeding, 

and harvesting, decreasing dependency on 

manual labor and ensuring operational 

efficiency (Bechar et al., 2017). 

 Predictive Analytics: ML-based 

predictive models utilize historical and 

real-time data to forecast crop yields, 

weather variability, and market 

fluctuations, enabling farmers to plan 

effectively and mitigate risks (Wolfert et 

al., 2017). 

 Livestock Management: Wearable 

sensors combined with AI algorithms 

monitor animal health, detect behavioral 

anomalies, and track productivity metrics 

such as milk yield and body weight 

(Nalepa et al., 2019). 

 Agricultural Drones: Equipped with 

computer vision and AI, drones capture 

aerial imagery to map fields, identify 

stress zones, and monitor pest infestations 

with high precision (Sishodia et al., 2020).

 

Table 2: Comparision of strengths and limitations of Al Tools 
Technique Strength Limitation 

Computer Vision 

System (CVS), Genetic 

Algorithm (GA), 

Artificial Neural 

Network (ANN) 

Works at high speed. Can multi-

task. 

Dimension-based detection may 

affect good species. 

Rule-Based Expert, 

Database (DB) 

Accurate results in the tested 

environment. 

Inefficiency of DB when 

implemented in large scale. 

Fuzzy Logic (FL), 

WebGIS 

Cost-effective, eco-friendly. Inefficiency due to scattered 

distribution. Takes time to locate  

FL Web-Based, Web-

Based Intelligent 

Disease Diagnosis 

System (WIDDS) 

Good accuracy. Responds swiftly 

to crop diseases. 

Limited usage as it requires internet 

service. Potency unverified as 

FL & TTS Converter Resolves plant pathological 

problems quickly. 

Requires high-speed internet. Uses a 

voice service as its multimedia 

Expert System Using Faster treatment as diseases are Time-consuming. Requires constant 
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Rule-Based in Disease 

Detection 

diagnosed quickly. Cost-effective 

based on preventive approach. 

monitoring to check if pests devel 

ANN, GIS 95% accuracy. Internet-based; some rural farmers 

may not have access. 

FuzzyX Pest 

Information System for 

Farmers 

High precision in forecasting. Internet-dependent. 

Web-Based Expert 

System 

High performance. Internet and web-based. 

ANN Has over 90% prediction rate. Does not kill infections or reduce 

their effect. 

 

This study highlights how AI can drive the 

digital transformation of agriculture, improve 

sustainability, and foster inclusive growth. The 

framework underscores not only the technical 

benefits but also the socio-economic 

implications, emphasizing equity, 

accessibility, and environmental stewardship. 

The paper concludes by identifying key 

research directions necessary to overcome 

current limitations and ensure that the 

integration of AI in agriculture remains 

scalable, sustainable, and inclusive for all 

stakeholders in the agricultural ecosystem. 

 

MATERIALS AND METHODS 

This study reviews research from 2018 onward 

on the use of machine learning (ML) and deep 

learning (DL) in agriculture, focusing on crop 

selection, soil and water management, nutrient 

management, pest and disease control, harvest 

practices, and climate impact assessment. 

Relevant studies were identified through 

searches in IEEE Xplore, ScienceDirect, Web 

of Science, Springer, MDPI, and Google 

Scholar using keywords such as ―machine 

learning‖ AND ―agriculture‖, ―deep learning‖ 

AND ―crop yield prediction‖, ―artificial neural 

networks‖ AND ―agriculture‖, and related 

terms. Searches were limited to titles, 

abstracts, and keywords to ensure relevance, 

targeting studies that applied ML, DL, or 

ANNs in agricultural production and 

management. 

Literature Review 

Artificial Intelligence (AI), including Machine 

Learning (ML) and Deep Learning (DL), has 

become a transformative force in modern 

agriculture, enhancing productivity, efficiency, 

and sustainability across the agricultural value 

chain. Early applications focused on crop 

monitoring, disease detection, and yield 

prediction, leveraging image processing and 

ML techniques for plant health assessment. 

For example, (Singh et al., 2019) introduced 

PlantDoc, a dataset for visual plant disease 

detection, while Kulkarni et al. (Kulkarni et 

al., 2021) demonstrated the use of image 

processing and ML for accurate disease 

identification. Recent studies have extended 

these approaches using drones and 

autonomous systems for early pest and disease 

detection in crops such as cashew (Rajagopal 

et al., 2023) and integrated farm management 

platforms like (Aijaz et al., 2025)  for 

optimized resource use. 

DL methods, particularly Convolutional 

Neural Networks (CNNs), attention-based 

models, and transformer architectures, have 

enhanced feature extraction from complex, 

high-dimensional agricultural data. For 

instance, Hu et al. 2024) developed a 

lightweight attention-based encoder-decoder 

framework for crop identification using 

multispectral images, achieving improved 

accuracy in real-world settings. (Didwania et 

al. 2024) applied transformer-based models to 

provide AI-driven advisory services for 

farmers. Transfer learning and meta-learning 

techniques, such as (Al Sahili 2022) and 

(Tseng et al., 2024), have reduced the need for 

extensive labeled datasets while improving 

model generalization across diverse crop types 

and regions. 
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ML and DL have also been integrated into 

autonomous systems, including drones and 

robotics, for real-time crop monitoring, disease 

detection, and precision pesticide application 

(Pratihar et al., 2024). Explainable AI 

approaches, such as AgroXAI (Turgut et al., 

2024), are being adopted to provide 

interpretable crop recommendations, 

facilitating trust and adoption among farmers. 

These AI-driven methodologies collectively 

enhance yield prediction, disease and pest 

management, soil and water optimization, and 

climate impact assessment (Nawaz et al., 

2025).   

 Despite these advancements, 

challenges remain, including limited 

availability of large-scale annotated datasets, 

high computational requirements for DL 

models, and the need for scalable deployment 

in rural and resource-constrained areas. 

Capacity building, AI literacy, and 

infrastructure development are essential to 

ensure that ML and DL technologies are 

accessible and beneficial to smallholder 

farmers. 

Importance of advance technologies in 

Agriculture 

Now days, AI is not just a tool but a partner 

for Indian farmers helping them navigate 

challenges and seize opportunities in the ever-

evolving agricultural landscape. Artificial 

Intelligence (AI) is revolutionizing Indian 

agriculture bringing tangible improvements to 

farmers' lives.   

 Smarter Farming Decisions: AI tools 

analyze weather patterns soil health and 

crop conditions to provide farmers with 

timely advice. This means they can make 

informed decisions about when to plant 

irrigate or harvest leading to better yields 

and reduced losses.  

 Efficient Resource Use: AI technologies 

enable the efficient use of inputs such as 

water fertilizers and pesticides 

minimizing waste and reducing 

operational costs. 

 Early Disease Detection: AI systems can 

identify signs of plant diseases or pest 

infestations early on. This allows farmers 

to take preventive measures before the 

problem spreads saving crops and 

reducing the need for harmful chemicals.  

 Access to Market Information: 

Platforms like eNAM connect farmers 

directly to markets eliminating 

middlemen. This ensures they get fair 

prices for their produce and reduces the 

chances of exploitation.  

 Financial Inclusion: AI-driven apps 

provide farmers with access to financial 

services helping them secure loans 

insurance and subsidies. This financial 

support empowers them to invest in better 

equipment and practices.  

 Sustainable Practices: AI contributes to 

the promotion of sustainable farming 

practices by optimizing resource use and 

reducing the environmental footprint of 

agricultural activities.  

 Skill Development: Initiatives are 

underway to train the youth in AI and 

agriculture creating a new generation of 

tech-savvy farmers who can innovate and 

lead in the agricultural sector.  

How AI is Transforming Indian 

Agriculture: Real-World Benefits 

 

 

 
Figure.2 AI is Transforming Indian Agriculture 
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Soil Management: Precision, Monitoring, 

and Optimization 

AI technologies have revolutionized soil 

management by enabling precise analysis and 

mapping of soil health. Machine learning 

algorithms process data from various sources, 

including sensors and satellite imagery, to 

assess soil properties such as pH, moisture 

content, and nutrient levels. Platforms like 

CropX integrate soil sensors, satellite imaging, 

and agronomic modelling to generate 

recommendations regarding irrigation and 

nutrient application.  

 

Table 3: Comparative analysis of soil management using AI/ML/DL techniques 

Technique Strength 
 

Limitation 
 

DSS 
Reduces erosion and sedimentary 

yield. 

Requires big data for training. 

ANN 

Can predict soil enzyme activity. 

Accurately predicts and classifies 

soil structure. 

Only measures a few soil enzymes. It 

considers more classification than 

improving the performance of the soil. 

 

Fuzzy Logic: 

SRC-DSS 

Can classify soil according to 

associated risks. 

Needs big data. Only a few cases were 

studied. 

MOM 

Minimizes nitrate leaching, 

maximizes 

Production. 

Takes time. Limited only to nitrogen. 

ANN 
Can predict monthly mean soil 

temperature 

Considers only temperatures factor for 

soil performance. 

ANN 
Cost-effective, saves time, has 92% 

accuracy 

Requires big data for training. Has 

restriction in areas of implementation. 

 

Soil Health Monitoring via Sensors and 

Imagery 

Soil health is one of the most important factors 

influencing crop yield, and AI is helping 

farmers monitor it with greater accuracy. By 

combining data from soil moisture sensors, 

satellite images, and spectral sensing, AI can 

assess parameters such as soil pH, nutrient 

availability, and moisture levels in real time. 

Weather data can also be integrated to predict 

changes that may affect soil quality. This 

continuous monitoring enables farmers to 

apply targeted interventions—like precision 

fertilization or timely irrigation—instead of 

treating all fields uniformly. As a result, both 

efficiency and sustainability are improved. 

Such AI-driven soil insights reduce waste 

while enhancing productivity (Aijaz et al., 

2025)   

Mapping and Spatial Precision 

Not all parts of a farm have the same soil 

quality, and this variation can greatly impact 

output. AI-powered geospatial techniques are 

now being used to generate highly detailed soil 

maps that highlight micro-variations within 

fields. These maps allow farmers to divide 

their land into different management zones and 

apply inputs accordingly—for example, 

adjusting fertilizer amounts or irrigation 

schedules to specific areas. This targeted 

approach reduces resource wastage and 

ensures that crops receive the right treatment 

in the right place. Over time, spatial precision 

supports healthier soils and better harvests. It 

also reduces environmental impacts by 

preventing overuse of chemicals (Raj, M. 

2025).  

Decision Support for Input Management 

AI models are increasingly being used to guide 

farmers on when and how to intervene in soil 

management. By analyzing soil condition data, 

these systems can recommend the right timing 

for nutrient application, irrigation, or even 

tillage. Such predictive decision support 

improves efficiency while cutting down on 
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unnecessary costs. It also helps conserve 

resources like water and fertilizer, reducing 

negative environmental effects. Farmers 

benefit not just from healthier crops but also 

from more sustainable farming practices 

overall. AI-enabled decision-making thus 

ensures long-term soil health while supporting 

higher productivity (Baranipriya, A. 2024).  

Crop Production: Prediction, Disease 

Management, and Smart Farming 

AI-based crop disease detection via 

convolutional neural networks (CNNs) is a 

well-explored domain: e.g. leaf-based disease 

detection surveys review various deep learning 

approaches and trade-offs between 

explainability and accuracy. (Kulkarni et al., 

2021)  Also, conventional ML/image 

processing techniques for plant disease 

detection have achieved accuracies in the 90-

plus percent range in controlled datasets. 

(Rajagopal et al., 2023). 

 

Yield Prediction and Crop 

Recommendation 

Machine learning models leveraging historical 

yield data, climate forecasts, and soil 

information can forecast crop output, and 

recommend crop types or varieties suited to 

local conditions. Systems like AgroXAI 

propose suitable crops based on weather & 

soil, with explainability to help end-users 

understand the ―why‖ behind suggestions. 

(Turgut et al., 2024)  AI and machine learning 

are helping farmers predict yields and choose 

the right crops for their fields. By analyzing 

historical yield data, soil health, and climate 

forecasts, these models can provide accurate 

predictions about expected production. Tools 

like AgroXAI even go a step further by 

recommending the most suitable crops and 

varieties based on local soil and weather 

conditions. Importantly, these systems are 

explainable, so farmers can understand why a 

particular crop is suggested. This transparency 

builds trust and confidence among farmers 

while guiding them toward more profitable 

decisions. In this way, AI makes farming less 

risky and more predictable (Nautiyal, M. 

2025).  

 

Table 4: Comparative analysis of crop management using  AI/ML/DL techniques 

Technique Strength Limitation            

CALEX Formulates scheduling 

guidelines for crop management 

activities. 

Time-consuming. 

PROLOG Removes less-used farm tools 

from the farm. 

Location-specific. 

ANN Predicts crop yield. Only considers weather as a factor 

for crop yield. 

ROBOTICS - 

Demeter 

Can harvest up to 40 hectares of 

crops. 

Expensive; consumes a lot of fuel. 

ROBOTICS 80% success rate in harvesting 

crops. 

Slow picking speed and accuracy. 

ANN Over 90% success rate in 

detecting crop nutrition 

disorders. 

Limited number of symptoms 

considered. 

FUZZY 

Cognitive Map 

Predicts cotton yield and aids 

crop decision management. 

Relatively slow. 

ANN Predicts crop response to soil 

moisture and salinity. 

Only considers soil temperature and 

texture as factors. 

ANN and Fuzzy 

Logic 

Reduces insect attacks on crops. Cannot differentiate between crops 

and weeds. 

ANN Accurately predicts rice yield. Time-consuming and climate-

specific. 
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Disease and Pest Detection 

Early detection of plant diseases and pests is 

critical to reducing yield losses, and AI is 

proving to be a powerful ally in this area. Deep 

learning techniques applied to leaf images, 

satellite data, and drone imagery can identify 

signs of disease before they spread widely. 

When combined with sensor data—such as 

temperature, humidity, and soil moisture—

accuracy improves significantly. A notable 

example is the CVGG-16 model developed by 

IIIT-Allahabad researchers, which integrates 

image and sensor data for high-accuracy 

disease detection. Such innovations help 

farmers take preventive action, minimize 

pesticide use, and safeguard crop productivity. 

AI-driven plant health monitoring ensures 

faster responses and healthier harvests (Singh 

et al., 2019). 

Precision Farming and Automation 

AI-powered automation is reshaping how 

farms are managed, making agriculture more 

precise and efficient. Robots, drones, and 

automated vehicles are increasingly being used 

for planting, spraying, monitoring, and 

harvesting, which reduces the need for manual 

labor. AI also helps in optimizing irrigation 

schedules by recommending exactly when and 

how much water crops need, preventing both 

overuse and scarcity. Fertilizer and pesticide 

applications can be fine-tuned with similar 

precision, reducing costs and environmental 

harm. Over time, such automation ensures 

uniformity in crop growth and improves 

timeliness of farming activities. This shift 

toward smart farming practices is transforming 

traditional methods into technology-driven 

systems (Nawaz et al., 2025)   

Market Dynamics: Forecasting, Supply 

Chains, and Value Capture 

AI enhances market dynamics through tools 

for price forecasting, demand prediction, and 

logistics optimization. Machine learning 

models, by analyzing historical price data and 

macroeconomic features, can forecast 

commodity prices and help farmers decide 

when to sell. Some agritech firms embed such 

modules in trading platforms and supply chain 

logistics modules. Further, AI-based supply 

chain systems optimize routing, inventory, and 

reduce post-harvest losses. In India, digital 

platforms are encouraging direct farmer-to-

consumer linkages, reducing dependence on 

intermediaries. 

Price Prediction & Demand Forecasting 

AI is becoming a powerful tool for helping 

farmers understand and plan for market 

fluctuations. By analyzing past price records, 

demand patterns, weather conditions, and 

broader economic indicators, AI can forecast 

future commodity prices with higher accuracy. 

This allows farmers to decide whether it is 

better to sell immediately, store their produce, 

or process it for added value. Such insights 

reduce the risks of sudden price drops and 

improve overall income stability. With the 

support of AI, farmers can shift from reactive 

selling to strategic market planning. This 

transformation strengthens their role in the 

agricultural value chain (Mukherjee et al., 

2023).   

Supply Chain Optimization 

From the moment crops are harvested until 

they reach consumers, AI can make supply 

chains more efficient and reliable. Smart 

algorithms help plan transport routes, manage 

storage conditions, and ensure that produce 

reaches markets on time while minimizing 

losses. By improving traceability and quality 

checks, AI also strengthens food safety and 

consumer trust. Matching supply with real-

time demand further reduces wastage and 

improves farmer profitability. For developing 

countries, where post-harvest losses remain 

high, AI-enabled logistics are a game-changer. 

Ultimately, these innovations reduce costs, 

increase transparency, and build more resilient 

food systems (Baranipriya, A. 2024).  

Platforms & Market Access 

Digital platforms are opening new doors for 

farmers to connect directly with buyers, 

reducing dependence on middlemen. 

Government-backed or private platforms, 

when integrated with AI, can recommend the 

best market channels, pricing strategies, and 

logistics support. This helps farmers secure 

better profits while also reaching wider 

markets. By cutting unnecessary 
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intermediaries, farmers gain a greater share of 

the value they create. AI-driven platforms also 

bring fairness and transparency to agricultural 

trade. Over time, such systems can empower 

even small-scale farmers to compete more 

effectively in modern markets (Rajagopal et 

al., 2023). 

Farmer Empowerment: Knowledge, 

Finance, & Equity 

AI empowers farmers by disseminating 

information and enabling credit / insurance 

access. AI models recognizing patterns in farm 

data (yield history, satellite imagery, farm 

inputs) are increasingly used to assess 

creditworthiness, especially for smallholder 

farmers without formal collateral. Mobile 

applications and chatbots leverage AI to 

deliver region-specific advice on weather, pest 

control, fertilizer schedules, etc. For example, 

Plantix (a well-known agritech app) uses deep 

learning to diagnose over 800 symptoms 

across 60 crops and returns management 

advice. (Raj, M. 2025).  

Information Delivery & Decision Support 

Today’s farmers depend on timely and reliable 

information to make better farming decisions. 

With the rise of mobile apps, chatbots, and 

advisory systems, they can now access 

localized weather updates, pest and disease 

alerts, and crop management recommendations 

in real time. When delivered in local languages 

and aligned with regional farming conditions, 

these tools become highly effective and user-

friendly. Affordable and easy-to-use platforms 

ensure that even smallholder farmers benefit 

from modern technologies. This move from 

intuition to data-driven practices improves 

productivity while reducing risks. Ultimately, 

AI-powered advisory solutions empower 

farmers to make informed choices every day 

(Das et al., 2024). 

 

Financial Inclusion: Credit, Insurance, Risk 

Assessment 

Financial access has always been a critical 

challenge for farmers, particularly for those 

without formal banking records. AI is helping 

bridge this gap by using farm data—such as 

crop yield history, soil quality, and satellite 

imagery—to assess risks more accurately. This 

makes credit scoring more inclusive and 

allows for better insurance models tailored to 

smallholder farmers. By moving beyond 

traditional paperwork, AI-based financial tools 

give farmers fairer access to loans and crop 

insurance. Affordable, transparent insurance 

systems also help reduce uncertainties in 

farming. In the long run, such AI-driven 

financial inclusion enables farmers to invest 

confidently and grow sustainably (Aijaz et al., 

2025).    

6.4.3 Collective Models & Shared Resources 

For many smallholder farmers, adopting AI 

tools individually can be costly and 

challenging. Collective models such as cluster 

farming and cooperatives make it possible to 

share infrastructure, pool farm data, and access 

AI-driven technologies together. This reduces 

individual costs while maximizing the benefits 

of advanced tools for all members. By working 

collectively, farmers can better manage risks, 

improve productivity, and gain stronger 

market access. Such collaborations also foster 

community-level knowledge sharing and trust 

building. In this way, AI adoption through 

cooperative models not only becomes 

affordable but also ensures equitable 

distribution of benefits (Baranipriya, A. 2024).  

Digital Agriculture Framework 

The provided framework illustrates a 

comprehensive approach to the digital 

transformation of agriculture by integrating 

advanced technologies, data-driven 

methodologies, and smart practices. It is 

organized across three major domains: Smart 

Farming, Farmgate-to-Fork, and Data-driven 

Agriculture. These domains are further 

supported by associated frameworks and 

practical use cases, collectively aimed at 

enhancing sustainability, productivity, and 

efficiency within the agricultural ecosystem. 

Smart Farming 

Smart Farming embodies the operational stage, 

where advanced technologies are applied 

directly within the farm to maximize 

productivity and minimize risks. It  enables 

precision-based farming practices. Core 

frameworks include Smart Farming-as-a-



 

Singh et al.                                   Curr. Rese. Agri. Far. (2025) 6(6), 1-17     ISSN: 2582 – 7146  

Copyright © Nov.-Dec., 2025; CRAF                                                                                                                11 
 

Service (FaaS), integrated nutrient 

management, and crop health monitoring 

systems. Mechanization of farms, precision 

micro-irrigation systems, and rapid soil health 

analysis (eSHC) serve to reduce manual effort 

and increase efficiency. Predictive models for 

pest infestations, hyperlocal weather 

advisories, and smart insurance solutions help 

mitigate risks. Yield prediction algorithms, 

coupled with digital crop input advisories and 

e-marketplaces, ensure farmers receive real-

time support for decision-making and market 

participation. 

Farmgate-to-Fork 

This domain addresses the post-harvest value 

chain, connecting farm outputs to markets and 

consumers while ensuring quality and 

efficiency. So it strengthens market 

connectivity and consumer trust.Market 

intelligence systems, logistics management, 

and quality and traceability frameworks 

underpin this domain. Applications include 

end-to-end supply chain optimization, food 

safety through quality certification, fintech 

solutions such as electronic warehouse receipts 

(eNWR), and the development of cold chain 

warehousing systems to reduce post-harvest 

losses. Additionally, predictive market linkage 

systems support demand forecasting and price 

prediction, thereby ensuring fair compensation 

for farmers. This phase ensures transparency, 

efficiency, and profitability across the 

agricultural value chain by reducing 

inefficiencies and safeguarding consumer 

trust. 

Data-driven Agriculture 

The foundation of the entire framework lies in 

data-centric approaches, which provide the 

digital backbone for agricultural innovation.  

The establishment of agri-data marketplaces, 

adherence to FAIR (Findable, Accessible, 

Interoperable, Reusable) data standards, and 

adoption of EFR (interoperability frameworks) 

are central components.  Data management 

platforms (DMP) for agricultural datasets, 

master data management systems, and the 

creation of registries and directories enable 

structured data storage, access, and utilization. 

By leveraging AI- and ML-driven analytics, 

this stage empowers predictive modeling, real-

time insights, and evidence-based policy 

development. 

 

AI Tools in Indian Agriculture:  

 

Table 5:  The adoption of AI technologies offers a multitude of benefits for Indian agriculture 

Aspect Traditional Farming (AI-enabled Farming) 

Decision-making 

 

Based on traditional knowledge, 

intuition, and experience. 

Data-driven precision farming 

with AI models and predictive 

analytics. 

Input Usage 

 

Overuse of fertilizers, pesticides, 

and water leading to wastage and 

soil degradation. 

Optimized input usage based on 

soil health, crop requirements, 

and AI recommendations. 

Productivity & 

Yields 

 

Highly variable yields, often 

affected by weather and resource 

mismanagement. 

Higher and more consistent yields 

through optimized planning and 

real-time monitoring. 

Sustainability 

 

 

Excessive chemical inputs and 

inefficient irrigation harm the 

environment. 

Sustainable practices promoted 

via AI-powered smart irrigation, 

soil management, and pest 

control. 

Climate Resilience 

 

 

Farmers vulnerable to monsoon 

failures, extreme weather, and 

pest outbreaks 

AI provides early warnings, 

predictive weather models, and 

adaptive strategies to mitigate 

risks. 

Market Access 

 

 

Dependence on middlemen, low 

price realization, poor market 

intelligence. 

AI-driven e-marketplaces, price 

prediction models, and 

traceability ensure fairer markets. 

Crop Monitoring 

 

 

Manual field inspections—time-

consuming, less accurate. 

 

Satellite, drone, and sensor-based 

monitoring with image processing 

for real-time insights. 
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Harvesting 

Labor-intensive, delayed 

harvesting due to labor 

shortages. 

AI-powered harvesting robots 

ensure timely and efficient yield 

collection. 

Farm Mechanization 

Conventional tractors with 

manual operation and high labor 

dependence. 

Autonomous driverless tractors 

with GPS-based navigation and 

remote control. 

Farmer 

Empowerment 

Smallholders marginalized with 

limited resources and decision-

making support. 

AI empowers smallholders with 

tools, market insights, and 

financial inclusion opportunities. 

 
Challenges & Limitations  of AI tools in 

Agriculture 

AI has immense potential to revolutionize 

agriculture; its successful integration requires 

overcoming challenges related to data quality, 

infrastructure, cost, skills, ethics, and 

sustainability to create an inclusive and truly 

―smart‖ farming ecosystem. Below are several 

concrete obstacles that we are facing in 

deploying AI in agriculture, especially in real-

world settings: 

 

 

Figure 3 Challenges & Limitations  of AI tools 

 Data Quality and Diversity: AI 

models require large, accurate, and 

well-labeled datasets, but agricultural 

data are often fragmented, biased, and 

incomplete, which reduces model 

reliability and generalization. A 

review on wheat crop monitoring 

found that limited and non-diverse 

labeled datasets, coarse spatial 

resolution of remote sensing, and 

difficulties generating reliable ground 

truth hamper deployment. 

 Infrastructure and Connectivity: 

Rural areas often lack stable internet, 

electricity, and sensor infrastructure, 

making it difficult to deploy IoT-based 

and real-time AI farming solutions. 

Studies indicate that many agrarian 

regions lack broadband access and 

consistent power supply, hindering the 

adoption of IoT-enabled systems. 

 High Costs: The high cost of sensors, 

drones, and data maintenance creates 

financial barriers, particularly for 

small and medium-scale farmers 

without subsidies or shared cost 

models. Research on smart farming 

adoption highlights that initial 

investment remains a major obstacle. 

 Skill and Knowledge Gaps: Farmers 

often lack AI and data literacy, while 

developers may lack agricultural 

expertise, resulting in impractical or 

poorly adapted solutions. Reviews 

emphasize the shortage of AI-literate 

farmers and limited technical experts 
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in rural regions, highlighting the need 

for capacity building. 

 Interpretability and Trust: AI 

systems often act as ―black boxes,‖ 

leading farmers to distrust 

recommendations they cannot 

understand, especially for disease 

detection and resource management 

decisions. The lack of model 

transparency remains a key limitation 

in precision agriculture. 

 Localization Challenges: AI tools 

trained in one region may fail in others 

due to differences in soil, climate, and 

crop conditions. Many studies show 

that models validated in limited 

regions do not generalize well across 

diverse agroecological zones. 

 Ethical and Policy Issues: Concerns 

regarding data privacy, corporate 

monopolization, and job displacement 

hinder AI adoption in agriculture. 

Weak policy frameworks further 

exacerbate these challenges, 

increasing dependency on proprietary 

platforms. 

 Energy and Sustainability Costs: 

High energy consumption from AI 

servers, drones, and sensors can offset 

environmental benefits, raising 

sustainability concerns. Studies 

identify energy use and carbon 

emissions as critical issues in AI-

driven agricultural systems. 

 

Future Directions 

As the field of AI in agriculture advances, 

several research and development paths stand 

out as particularly promising. One key area is 

data collection and sharing, where progress 

hinges on creating large, annotated, multi-

modal datasets that cover diverse crops and 

geographies. For example, the AgriNet project 

collected over 160,000 agricultural images 

from more than 19 geographical locations and 

more than 423 classes of species, diseases, 

pests, and weeds; the pretrained models built 

on AgriNet showed strong performance across 

multiple external datasets. (Singh et al., 2019).  

Federated learning is also being explored to 

allow decentralized model training that 

preserves data privacy, with several studies 

and reviews emphasizing its relevance in smart 

agriculture systems.  

Another promising direction is edge 

computing and low-connectivity solutions. 

Researchers are increasingly focusing on 

architectures that allow AI models to run on 

local devices (such as sensors or smartphones), 

reducing dependence on continuous cloud 

connectivity. This is crucial in rural areas with 

unstable or limited internet service. A recent 

paper on edge-computing-enabled smart 

agriculture discusses the technical 

architectures and bottlenecks in such 

environments, including energy constraints 

and signal reliability issues, and proposes 

ways to build more resilient designs. (Hindel 

et al. 2023). Also, efforts are being made to 

improve energy efficiency of edge systems, 

such as using optimized offloading 

mechanisms, clustering and denoising 

algorithms, or even powering edge devices via 

renewable or agricultural waste sources.  

To build trust and adoption, explainability, 

transparency, and model interpretability must 

be central. Farmers and extension agents need 

to understand why a recommendation or 

prediction is made—not just what the 

recommendation is. Without such 

explainability, adoption lags due to mistrust or 

lack of clarity. Meanwhile, emerging AI 

paradigms like meta-learning (e.g. TIML) 

allow models that can transfer knowledge from 

data-rich regions to data-scarce ones, 

improving adaptability. (arXiv) 

Cost-effectiveness and scalability are also 

critical. To make AI tools accessible beyond 

large farms or wealthy agribusinesses, lower-

cost sensors, open-source frameworks, 

modular robotics, cooperative or shared 

infrastructure models, and financing/subsidy 

schemes are needed. Hybrid models that 

combine classical machine learning and 

transfer learning or feature selection (for 

instance combining ReliefF with transfer 

learning) have shown good performance with 

less data or resource requirements.  

https://arxiv.org/abs/2202.02124?utm_source=chatgpt.com
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Localization and adaptation matter: AI 

models must be tailored to local 

agroecological conditions, crop varieties, 

cultural practices, and available inputs. 

Including farmer knowledge via participatory 

design, collecting local feedback, and 

continuous field testing will help ensure 

models remain relevant and practical. Domain 

generalization techniques—such as those used 

for crop segmentation under varying terrain, 

lighting, weather, and crop species—are 

proving useful in making models more robust 

in real-world deployment. (Singh et al., 2019). 

Finally, policy, regulation, and ethical 

frameworks are required alongside technical 

innovation. These include ensuring data 

privacy, defining data ownership or benefit 

sharing, providing incentives or subsidies for 

infrastructure and extension services, and 

evaluating the sustainability and 

environmental impact of AI deployment. 

Studies suggest that lacking such frameworks 

leads to slow uptake and possible inequities. 

Edge AI’s promise is strong, but it may widen 

the digital divide if smallholder farmers do not 

have access or capacity.  Additionally, novel 

methods like self-supervised learning are 

emerging to reduce dependence on manually 

labeled. 

CONCLUSION 

This study shows how smart farming 

technologies—like sensors, drones, and IoT-

based monitoring systems—are changing the 

way agriculture works, from managing soil 

and crops to predicting market trends. The 

proposed framework is built around three main 

areas: Automated Smart Farming Operations, 

Farmgate-to-Fork Connectivity, and Data-

Driven Decision Support. Together, these 

elements create a more connected, efficient, 

and sustainable approach to farming. At the 

center of this transformation is Artificial 

Intelligence (AI). By combining AI with real-

time data and machine learning, farmers can 

monitor soil health more accurately, predict 

yields, detect pests or diseases early, and make 

smarter decisions based on reliable insights. 

This not only improves productivity and 

reduces costs but also supports eco-friendly 

and resource-efficient farming practices. 

AI is also reshaping agricultural markets—

helping forecast prices, streamline supply 

chains, and connect farmers directly to digital 

marketplaces. Still, challenges such as limited 

internet access, inconsistent data, and a lack of 

technical skills continue to slow adoption. 

Overcoming these hurdles will require 

teamwork between policymakers, researchers, 

and technology providers. As agriculture 

becomes more data-driven, embracing 

Explainable and Sustainable AI will be key to 

ensuring trust, transparency, and long-term 

environmental balance. In the end, smart 

farming and AI together offer a powerful path 

toward a future of precision, resilience, and 

sustainable growth in agriculture. 
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